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Abstract— Open-vocabulary 3D segmentation enables the
exploration of 3D spaces using free-form text descriptions.
Existing methods for open-vocabulary 3D instance segmen-
tation primarily focus on identifying object-level instances
in a scene. However, they face challenges when it comes to
understanding more fine-grained scene entities such as object
parts, or regions described by generic attributes. In this work,
we introduce Search3D, an approach that builds a hierarchical
open-vocabulary 3D scene representation, enabling the search
for entities at varying levels of granularity: fine-grained object
parts, entire objects, or regions described by attributes like
materials. Our method aims to expand the capabilities of open-
vocabulary instance-level 3D segmentation by shifting towards
a more flexible open-vocabulary 3D search setting less anchored
to explicit object-centric queries, compared to prior work. To
ensure a systematic evaluation, we also contribute a scene-scale
open-vocabulary 3D part segmentation benchmark based on
MultiScan, along with a set of open-vocabulary fine-grained
part annotations on ScanNet++. We verify the effectiveness
of Search3D across several tasks, demonstrating that our
approach outperforms baselines in scene-scale open-vocabulary
3D part segmentation, while maintaining strong performance
in segmenting 3D objects and materials.

I. INTRODUCTION

Extracting semantic meaning from 3D scenes has been
traditionally performed by identifying a pre-defined set of
classes. For this purpose, most 3D segmentation methods [1]–
[3] are trained on annotated datasets, resulting in closed set
segmentation capabilities. While these approaches work well
on these pre-defined categories, they do not generalize to
novel classes. However, personal and assistive robotics sys-
tems require the ability to operate in unknown environments
and handle tasks of varying complexity.

This necessitates methods to adapt to new tasks and
environments, especially in human-centric spaces, which
are inherently complex and consist of fine-grained elements
defining the interaction landscape of the scene. While identi-
fying novel classes is already a challenging task, for many
interactive robotics applications we need to identify not only
objects, but also their finer-grained components [4], such as
elevator buttons, cabinet handles or chair seats. Furthermore,
attributes often differ across parts of an object, e.g., the seat of
a chair might be made from leather while its legs are wooden.
For example, a robot that cleans different materials with
selected cleaning agents needs to be able to differentiate the
respective materials. A purely object-centric understanding
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Fig. 1: Search3D. We propose open-vocabulary 3D search at multi-
ple levels of granularity. Starting from posed RGB-D images and
the corresponding reconstructed geometry, we build a hierarchical
scene representation with embedded features for the scene objects,
and finer-grained parts (left). This allows us to search not only for
objects, but also parts or attributes matching a given query (right).

often cannot provide the required information. Ultimately,
systems for such interactive applications in the real world
must be capable of identifying and segmenting scene entities
based on flexible and user-defined descriptions.

Open-vocabulary 3D segmentation methods [5]–[9] have
recently attracted growing interest [10] and demonstrated
very promising results. These open-vocabulary methods can
be grouped based on the underlying scene representation
used to aggregate the features: a) instance-level object-centric
representations such as OpenMask3D [6] and Open3DIS [7],
or b) semantics-oriented point-level representations such as
OpenScene [5] and ConceptFusion [8].

Object-centric open-vocabulary 3D segmentation methods
typically first extract a set of class-agnostic 3D object instance
masks and then compute a feature representation per object,
represented in the joint vision-language embedding space of
models such as CLIP [11]. These methods are characterized
by compact scene representations and are well-suited for
directly segmenting object instances that match a given open-
ended query. They are however not designed to identify scene
entities of varying levels of granularity, e.g., “seat of a chair”.

In contrast, other 3D open-vocabulary segmentation meth-
ods such as OpenScene [5] or ConceptFusion [8] build a
per-point representation and aggregate per-point features
to obtain a finer feature granularity. Such models have a



few limitations: Storing per-point features is costly; these
features are inherently noisy and lack instance information,
which requires additional post-processing steps to extract
individual 3D masks from the cluttered feature representation.
Finally, the least obvious limitation is derived from the way
these models compute the point-level features. Although the
projected open-vocabulary features are fine-grained at the
level of the geometrical scene representation, the intermediate
2D feature backbones these methods use lack the detailed level
of semantic meaning and are biased towards an object-level
understanding. Consequently, these methods often cannot
robustly identify object parts and fine-grained elements, or
mask queries that describe areas spanning multiple regions
of the scene, e.g., material segmentation.

In light of these limitations, we argue that fine-grained open-
vocabulary 3D segmentation should evolve to encompass a
wider array of scene elements. Ideally, an open-vocabulary 3D
segmentation method should be able to robustly segment not
only long-tail objects (“Nerf gun”), but also object parts
(“chair backrest”) and queries spanning multiple regions
(“wooden”), while separating instances when necessary. This
goes beyond the capabilities of existing methods. We aim
to develop a method less anchored on the explicit level of
object-centric queries, and move closer towards a setting with
more flexible open-vocabulary 3D search capabilities.

Inspired by this vision, we propose Search3D, a hierarchical
open-vocabulary 3D instance segmentation method that uses
an underlying hierarchical scene graph representation in the
form of a tree. Our method can segment the 3D scene entity
that corresponds to an arbitrary textual query which could
describe either an object instance (level 1) or parts of an
object (level 2), see Figure 1. For this purpose, we first
build a tree representation that consists of a scene, object
and part-entity layers. For each object and part node in our
representation, we compute open-vocabulary features which
enable 3D segmentation at each level.

To evaluate our method, we introduce a novel evaluation
suite for open-vocabulary scene-scale 3D part segmenta-
tion based on MultiScan [12]. Additionally, we perform
experiments using hierarchical annotations for selected Scan-
Net++ [13] scenes. Our method outperforms baselines for 3D
open-vocabulary segmentation of object instances, as well as
object parts (MultiScan, ScanNet++), and is able to segment
the scene beyond instances, e.g., material segmentation
(3RScan [14]). To summarize our key contributions:

• We propose a hierarchical open-vocabulary 3D seg-
mentation method capable of segmenting both entire
objects and their parts given arbitrary textual queries,
by aggregating features anchored to different granularity
levels in a hierarchical tree structure.

• We introduce a benchmark for open-vocabulary scene-
scale 3D part segmentation by adapting MultiScan [12]
dataset for open-vocabulary 3D part segmentation.

• We contribute open-vocabulary hierarchical part annota-
tions for a selection of ScanNet++ [13] scenes.

• Our approach outperforms baselines on open-vocabulary
3D segmentation of object instances, part-level tasks,

and scene-scale tasks such as material segmentation.

II. RELATED WORK

A. Open-vocabulary 3D scene understanding

Existing open-vocabulary 3D scene understanding methods
typically focus on either object-level segmentation or point-
level semantic segmentation. For instance, methods such as
OpenMask3D [6] and Open3DIS [7] are object-centric and
hence unable to segment scene entities at varying granularities.
In contrast, point-level methods such as OpenScene [5]
and ConceptFusion [8], along with open-vocabulary implicit
methods such as LeRF [15] and OpenNeRF [16] offer open-
vocabulary features that are insufficiently detailed to segment
fine-grained scene elements. Hierarchical open-vocabulary
querying is supported by N2F2 [17], a recent 3D Gaussian
splatting-based method which embeds hierarchical features
within the neural scene representation. However, these features
do not enable explicit querying at the part-instance level.
GARField [18] builds a representation with an affinity field
allowing to group scene elements at various granularities, but
it does not provide any language-guided querying abilities.

A few recent works [19]–[22] have addressed 3D part
segmentation in an open-vocabulary setting. However, these
methods do not tackle 3D open-vocabulary part segmentation
at the scene level. Instead, they focus on segmenting parts
within single-object representations, e.g. they only support
open-vocabulary segmentation within object point clouds
directly, rather than taking a scene scale input. Additionally,
approaches which benefit from language-guided segmentation
methods such as GLIP [23] require queries to be defined
while building the representation to be able to perform open-
vocabulary segmentation. This means that for each new
query, these methods need to be run again using the set of
available images. Our method differs from those by building
an intermediate hierarchical feature representation, neither
requiring prior knowledge of queries nor storing the input
images. It allows for querying the scene during inference,
enabling efficient use for real-world applications.

There are also a few methods such as HOV-SG [24]
and CLIO [25] employing hierarchical open-vocabulary 3D
scene graphs for robotic navigation. However, their methods
operate at the floor, room, region or object levels, whereas
our approach further breaks down objects into their smaller
parts within the hierarchical representation.

B. Vision-language models and open-vocabulary image seg-
mentation

Recent success of large-scale model training has resulted
in a series of vision-language models (VLMs). Models such
as CLIP [11], SigLIP [26], and SILC [27] provide a joint
embedding space for their image and text encoders. These
image encoders typically take a single image as input and
provide a global image embedding. While this enables tasks
such as image classification, these representations fall short
when localization abilities are required. To address local-
ization based open-vocabulary detection and segmentation
tasks, a series of methods [28]–[34] were developed. Models



Reconstructed 3D Geometry

Posed RGB-D Frames

Class-agnostic 3D object instances

3D segments constrained to 
object instances

Fine-grained 
  2D segments

Segment-feature computation

Text query

Se
m

an
tic

-S
A

M
 

SigLIP features 
from image 

crops 

SigLIP

Queryable 
pixel-aligned 

features

Multi-view 
fusion of 3D 

segment 
features

Pixel-aligned feature computation

Top-k view 
selection

Object-feature computation

SigLIP features 
from image 

crops 

SigLIP

Aggregation 
of object 
features

Geometric 
segmentation

Jo
int

 vi
sio

n-l
an

gu
ag

e 

em
be

dd
ing

 sp
ac

e

Object 
features

Segment 
features

Input Output

3D object 
instance 
segmentation

1 2

3

4

5

6

Fig. 2: Search3D overview: 1⃝ The inputs of our approach are posed RGB-D images of a 3D indoor scene along with its reconstructed 3D
geometry. 2⃝ computes class-agnostic 3D instances which are passed to a geometric segmentation method 3⃝, yielding a hierarchical 3D
scene representation. In steps 4⃝ and 5⃝, feature vectors are obtained for each object and segment. The hierarchical output representation
6⃝ is queryable with open-vocabulary features for objects and their corresponding parts enabling search in 3D via arbitrary text queries.

such as OpenSeg [29] and LSeg [28] have a pixel-aligned
feature representation where each pixel is associated with
an embedding vector in the joint vision-language embedding
space. As these models are generally trained to ensure
a feature alignment with full object masks, they have a
limited ability to identify fine-grained scene entities such
as object parts. To address this, a few recent methods have
addressed open-vocabulary part segmentation [35]–[37]. A
critical limitation of these methods is that they lack an explicit
intermediate feature representation, and instead they require
the text query to be given as an input to the segmentation
network. Therefore, these methods are unfortunately not
suitable for directly aggregating meaningful features while
building a 3D open-vocabulary representation with part-
segmentation capabilities we desire.

III. METHOD

We introduce a novel hierarchical 3D scene representation
that enables open-vocabulary segmentation for scene entities
at multiple granularities, including objects and their parts.
The representation is built upon 3D scenes reconstructed from
a sequence of posed RGB-D images, shown in Fig. 2 1 ,
and requires us to solve the following two challenges:

1) Building a 3D scene representation that accurately
captures scene entities at both object and part levels,
Fig. 2 2 and 3 , discussed in section III-A.

2) Computing open-vocabulary features for the scene repre-
sentation, Fig. 2 4 and 5 described in section III-B.

A. Hierarchical 3D scene representation

To capture both whole objects and their finer-level compo-
nents, we construct a hierarchical scene representation. For
this purpose, we propose to build a tree structure (Fig. 1)
that represents the scene as the root node, which consists of
class-agnostic object instances which are further subdivided
into smaller object components, e.g. object parts.

Our approach begins with an object-level mask proposal
module, Fobj . This module leverages a transformer-based
Mask3D backbone [1] pretrained on ScanNet200 [38], and

extracts class-agnostic object-level instances from the recon-
structed 3D scene geometry. Given the 3D scene Pscene ∈
RN×3 where N is the number of points, the module outputs
a set of M binary instance masks, i.e., M = Fobj(Pscene) =
{m3D

1 ,m3D
2 ...,m3D

M }. These masks represent the object
nodes at the first level of our hierarchical scene representation.

The second stage of our method is the part-level seg-
mentation module, Fseg. This module first breaks down
object instances into more granular segments S by applying
an instance-aware geometric over-segmentation technique
which computes a set of segments Sm for each object m
such that Sm = Fpart(Pobj,m) = {s3D1 , s3D2 ..., s3DS }, where
Pobj,m ∈ RNm×3 represents the 3D points that correspond to
the predicted object mask m3D

m . The segmentation module is
a 3D adaptation of the graph-cut segmentation algorithm [39],
originally proposed by [40]. Instead of applying geometric
segmentation to the entire scene at once, we leverage the
previously computed 3D object instance masks M. By
computing the part segments within each instance separately,
we ensure that the resulting segments remain within the
boundaries of a single object, preserving the hierarchical
tree structure. This also implies that each segment contains
points from only one object entity and therefore segments
do not span across multiple object masks. For geometric
over-segmentation, we use a clustering threshold of 0.05 and
a minimum number of vertices of 100 per segment.

So far, we have computed the scene entities hierarchically
using a geometric representation of the 3D object instances
and their constituent segments. While these 3D masks
effectively capture the spatial structures, they inherently lack
the semantic information required for open-vocabulary 3D
search. In the next section, we describe how we enrich these
scene entities with open vocabulary features, enabling flexible
3D segmentation based on free-form text queries.

B. Bringing semantic meaning to 3D scenes

To enable querying scene entities across different hierarchi-
cal levels within our scene representation, both object and part-
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Fig. 3: Pixel-level features. OpenSeg [29], used in OpenScene,
has a limited understanding of finer-grained object parts in the
scene. We propose to obtain pixel-aligned features by combining
Semantic-SAM segments [41] and SigLIP [26], enabling fine-grained
localization of concepts such as object parts and materials (right).
Bright yellow means higher similarity to the text query.

level features are co-embedded in a joint embedding space
using the same vision-language model. For this, we build
the semantic 3D feature representation using SigLIP [26].
Building on the hierarchical 3D scene representation discussed
in Sec. III-A, features are computed explicitly at two levels:
objects and part segments as shown in Fig. 2 4 and 5 .
Object-features 4 are obtained using a method similar
to [7] and [6] leveraging class-agnostic object masks to
identify the optimal views of objects for extracting semantic
features. These views are selected based on the projection
characteristics of the object masks M initially provided by
the object-predictor 4 . Given the 3D object proposals and
the set of camera poses, the visibility ratio of each object is
determined by projecting the object’s points onto the camera
image. These scores are then ranked in descending order,
allowing us to select the top-K views (K = 5) with the
highest visibility ratio and therefore lowest levels of occlusion.
We also subsample the RGB sequence by processing only 1
out of every 5 frames for view selection, similar to [6].

For each selected view of an object, we first crop the
image around a tight 2D bounding box that encapsulates
the projected object points. To gradually incorporate more
scene context, we perform multi-scale cropping, extending the
bounding box by a ratio of kexp = 0.2 for L steps, obtaining
L crops per view, yielding a total of K · L image crops
representing the object (L = 3). These crops are then encoded
into image embedding vectors of dimension D = 1152 using
the SigLIP [26] image encoder (So-400m). The final feature
vector for each object in our output representation 6 is
obtained by average pooling the multi-view embeddings.
Segment-features 5 , particularly for smaller scene entities
such as object parts, are more challenging to obtain. While it
is technically possible to use the approach from object-feature
computation – selecting best views for image crops – our
experiments show that this approach leads to less informative
features for segments, which are typically much smaller in
scale. Pixel-aligned VLMs like OpenSeg [29] may seem like a
promising alternative due to their ability to capture pixel-level
details, but as illustrated in Fig. 3, they remain biased towards
an object-level understanding and often fail to capture the
fine granularity required to represent smaller object parts.

To address this issue, we propose a method for obtaining
pixel-aligned features which have the representative power to
also capture finer-grained scene entities. Using pixel-to-3D
point mapping, we can directly aggregate these features for

each predicted 3D part-segment (from 3 ) individually. High-
level illustration of this process is provided in 5 of Fig. 2.
As the first step, we apply the automatic mask generator from
Semantic-SAM [41] on all images in our RGB sequence,
explicitly specifying the three highest granularity levels to
consistently generate 2D segments representing smaller object
parts. Following a cropping strategy similar to that of the
object-feature computation pipeline, we expand the tightest
fitting 2D bounding box by a factor of kexp = 0.1 to obtain
image crops of the fine-grained segments. These 2D segment
crops are then passed through the SigLIP [26] image encoder,
resulting in feature vectors of dimension D for each segment.

Since our 2D segments are non-overlapping, we assign
the computed segment feature vector to all pixels within
each segment, producing a queryable pixel-aligned feature
representation with shape H × W × D, where H and W
represent the height and width of the image and D the feature
dimensionality. Finally, these multi-view features are fused
at the 3D segment level through average pooling. This step
leverages the camera poses and scene geometry associated
with each RGB frame to align the pixel-level features with
the corresponding 3D segments (as extracted in 3 ).

Since our initial 3D segmentation is a geometric over-
segmentation of each object 3 , some parts may be split into
multiple segments, even if they belong to the same component
(e.g. the front and back parts of a chair’s backrest). To address
this, we perform a semantically-informed merging of part-
segments at the final stage. For each 3D segment, neighboring
segments within the same object that exhibit similar features
are identified. We assess two key constraints to determine
whether two segments should be merged: 1) are the segments
close enough (i.e. is the closest distance between points of
the two segments below a threshold thrdist), and 2) are the
feature vectors similar enough (i.e. is the cosine similarity
between two vectors greater than a threshold thrfeat)? Pairs
of segments meeting both conditions are iteratively merged
until no more candidates satisfy the criteria. We employ
thrdist = 0.07 and thrfeat = 0.13. Once all candidate
segment pairs are merged, the new 3D segment becomes the
union of the merged components, and its feature vector is the
average of all contributing features. This process refines the
set of 3D segments, which are then updated in the hierarchical
scene representation to reflect the semantic merging.
Hierarchical open-vocabulary 3D search. Our hierarchical
feature representation allows us to search at multiple levels of
granularity, enhancing the open-vocabulary 3D segmentation
capability. When querying for a specific part of an object,
we leverage both the part-level and object-level semantic
information encoded in our hierarchical representation.

Given an input query such as “seat of a chair”, we first
embed the full query text using the SigLIP text encoder to
obtain an embedding vector etxt ∈ RD.

In our hierarchical representation, each object and seg-
ment is associated with feature vectors: eobj for the ob-
ject node and eseg for the part segment node. For any
pair of features (eobj , eseg) – where eobj represents the
parent object feature and eseg represents the child part



segment feature – we compute the overall similarity with
the query text embedding etxt using the following formula:
simquery = avg(cos_sim(etxt, eobj), cos_sim(etxt, eseg)).
Here, cos_sim denotes the cosine similarity between L2-
normalized embedding vectors. This average similarity score
combines the relevance of both the object-level and segment-
level features with respect to the query.

By leveraging this hierarchical approach, we can effectively
capture the desired object parts even when the query pertains
to a specific segment of a larger object. This method enables
us to accurately identify and retrieve both individual parts
and their broader contextual components within 3D scenes.
This flexibility allows for more accurate and contextually
relevant results in fine-grained 3D segmentation tasks.

IV. DATA
In this work, we aim to extend open-vocabulary 3D

segmentation capabilities to different granularity levels. In
that direction, we explore our method’s ability to perform
scene-scale 3D part-level instance segmentation guided by
open-vocabulary descriptions. To comprehensively evaluate
our method, we need to identify a dataset with scene-scale
annotations, ideally capturing the object-part hierarchy.

A. Open-vocabulary 3D part segmentation on MultiScan
As previously mentioned, the MultiScan [12] dataset is the

only available resource with both scene-scale object and part
instance annotations. MultiScan provides key assets such as
RGB-D sequences, calibrated camera data and corresponding
3D surface meshes. Most importantly, it offers part-level and
object-level semantic labels, which maintain the scene-object-
part hierarchy, which is crucial for our work.

Originally, MultiScan dataset was annotated with 419
fine-grained categories, later grouped into coarser category
sets. For 3D object-level instance segmentation, the original
benchmark focuses on 17 common object categories. However,
for 3D part-instance segmentation, it only features 5 part-
semantic categories: static, door, drawer, window, lid. While
the choice of these 5 categories is quite meaningful for
MultiScan’s original focus on articulated part segmentation,
for the open-vocabulary scenarios we would like to address,
we need an evaluation suite that covers a much broader
variety. To this end, we analyze the MultiScan annotations,
and identify a larger set of object and part categories suitable
for evaluating open-vocabulary performance. The adapted
dataset we release, based on existing fine-grained annotations
from MultiScan, includes 155 object and 15 part categories.

Another key consideration for open-vocabulary part seg-
mentation is how meaningful part names are at the scene-scale.
For instance, existing part annotations only specify the part’s
semantic category, such as “door”. Upon closer inspection,
we found this could be problematic when performing and
evaluating open-vocabulary part segmentation based solely
on the part category name. An example from the dataset is
the following: a “desk” object has a part labeled as “door”,
which, without additional context, could lead to confusion
about what scene entity is being referenced. Even humans
might mistakenly associate it with the typical meaning of

Scene Object Annotated Parts

“blue armchair” “legs”
Fig. 4: An example from our hierarchical object and part
annotations on a selection of ScanNet++ [13] scenes.

a “door”. To mitigate this, we recognize that (object, part)
pairs are generally more informative for identifying part-level
entities in the scene, such as the “seat” of a “chair”, or the
“door” of the “cabinet”. Following this insight, we extract a
set of 47 joint object-part labels from the MultiScan dataset,
consisting of these more informative (object, part) pairs.

B. Fine-grained part annotations on ScanNet++

To evaluate our method on fine-grained object and part
segmentation, we provide an additional evaluation dataset
containing annotations on laser scans (Fig. 4). As discussed
in [4] and [13], laser scans capture finer 3D geometry details
of object parts within indoor environments. These details are
often absent in datasets captured with commodity devices (e.g.,
iPhone), such as MultiScan [12]. To address this, we provide
an evaluation dataset with 14 object and 20 part annotations
across 8 ScanNet++ [13] scenes along with open-vocabulary
text descriptions. To do this, we utilize the SceneFun3D
annotation tool [4] which enables the fine-grained semantic
annotation of high-resolution point clouds, and we extend it
to incorporate object-part hierarchy information.

V. EXPERIMENTS

To evaluate our method’s capability to search and segment
in 3D via arbitrary open-vocabulary queries, we evaluate it
on diverse tasks including a) 3D part segmentation (Sec. V-
A), b) 3D object instance segmentation (Sec. V-B) and c)
3D material segmentation (Sec. V-C). Furthermore, method
design choices are supported by respective ablation studies.

A. 3D part segmentation

To evaluate our method’s ability to handle queries beyond
object-level descriptions, we formulate the task of scene-level
3D open-vocabulary part segmentation. For this analysis, we
use our adapted MultiScan [12] scene-level part segmentation
data (see Sec. IV-A), as well as the set of annotations we
provide on the ScanNet++ [13] dataset (see Sec. IV-B). In
our experiments for part-level instance segmentation, we use
the Average Precision metric evaluated at 50% (AP50), 25%
(AP25) overlap thresholds, as well as averaged over the range
of [0.5 : 0.95 : 0.05] (AP) following previous works.

First, we assess the quality of our segment features for
identifying object parts using an oracle mask experiment,
isolating feature quality from 3D geometric part segmentation
quality. For this analysis, we use ground-truth (GT) part
segments for all methods: OpenScene [5], OpenMask3D [6]
and Search3D (Ours). For OpenScene, we aggregate per-point
features for each GT 3D part segment to obtain segment



Methods Segments AP

OpenScene [5] Oracle 31.4
OpenMask3D [6] Oracle 35.7
Search3D (Ours) Oracle 49.5 (+13.8)

TABLE I: 3D part feature quality evaluation on the MultiScan
[12] dataset using GT part segments. We conduct an oracle
experiment using annotated GT part segments to aggregate features
for OpenScene [5], OpenMask3D [6] and Search3D (Ours) to
measure the quality of the features computed from each method,
when isolated from geometric segmentation performance.

Methods Aggregation AP AP50 AP25

(1) OpenScene [5] segments 3.2 5.5 13.7
(2) OpenMask3D [6] objects 3.3 6.1 11.3
(3) OpenMask3D [6] segments 3.1 6.2 18.2
(4) GARField [18] + Search3D segments 3.5 8.9 20.5
(5) GARField [18] + Search3D seg. + hierarchy 3.2 8.4 15.3
(6) Search3D (Ours) seg. + hierarchy 7.9 14.5 31.5

(+4.6) (+8.3) (+13.3)

TABLE II: 3D part segmentation on MultiScan [12]. We formulate
joint queries combining object and part descriptions to perform open-
vocabulary part retrieval. (1) uses 2D fused OpenSeg [29] feats.,
and per-point feats. are aggregated over part segments. (2) uses the
orig. object-level masks from OpenMask3D. (3) is our adaptation
of (2) as a stronger baseline using segment-level aggregation. (4)
and (5) use object and part masks from GARField [18] at scale
levels 0.1 and 0.35, but use Search3D for feature computation. Our
method (6) uses all components, including hierarchical search.

features, and for OpenMask3D we simply aggregate per-
mask features for each GT part segment. Results from this
oracle experiment on the MultiScan dataset are presented in
Tab. I, illustrating strong open-vocabulary part-segmentation
performance using our segment-level features, showing at
least + 13.8 AP improvement over baseline methods.

Having analyzed feature informativeness using ground-
truth part masks, we evaluate part segmentation performance
using predicted part masks on the adapted MultiScan dataset.
The results, presented in Tab. II, validate our method’s strong
3D part segmentation ability. Fig. 5 further demonstrates the
improved part localization of our approach compared to meth-
ods such as OpenScene with per-point feature representations.
Additionally in Tab. III, we provide part-segmentation results
on our ScanNet++ annotations (Sec. IV-B).

Ablation study. We also analyze the impact of semantically
informed segment merging and hierarchical search capabilities.
The results shown in Tab. IV emphasize that semantically
informed segment merging is crucial, contributing to + 3.2
AP50. Leveraging the scene-hierarchy when searching for
part-level entities adds another + 3.1 AP50. When applying
hierarchical search for open-vocabulary part segmentation,
averaging the object-level and part-level similarity scores
yields slightly better results than using the maximum of
these scores. Overall, these additional components lead to a
combined improvement of + 6.3 AP50.

B. 3D instance segmentation

Another key question is whether our method maintains
strong open-vocabulary 3D instance segmentation perfor-
mance while also being capable of segmenting part-level
scene entities. To evaluate this, we compare our method with

OpenScene [5] Search3D (Ours)

Query: “backrest of a chair”

Query: “surface of the dinner table”

Fig. 5: Heatmap visualizations demonstrating the similarity be-
tween the text query and scene features. We compare OpenScene
[5] per-point features with the segment features from our method.
Dark red means high similarity and dark blue means low similarity.
Our method shows highly localized understanding of object parts.

Methods AP AP50 AP25

OpenMask3D [6] 5.2 15.0 18.1
Search3D (Ours) 17.0 32.4 38.3

TABLE III: 3D part instance segmentation results on the set of
annotations we provide on a selection of ScanNet++ [13] scenes.

Methods Seg. Merging Hier.
Aggr. search AP AP50 AP25

(1) Ours ✓ 4.7 8.2 17.6
(2) Ours ✓ ✓ 6.6 11.4 23.7
(3) Ours ✓ ✓ ✓ (max.) 7.5 13.5 28.4
(4) Ours ✓ ✓ ✓ (avg.) 7.9 14.5 31.5

(+3.2) (+6.3) (+13.9)

TABLE IV: Ablation study on components of Search3D for
3D part segmentation evaluated on MultiScan [12]. Merging
refers to post-processing and merging 3D segments based on their
feature similarities. Hier. search refers to the process of measuring
the overall similarity between text query and each segment using
both object and part features.

Head Common Tail
Model Masks Img. Feat. AP (AP) (AP) (AP)

Closed-vocabulary, full sup.
Mask3D [1] Mask3D − 26.9 39.8 21.7 17.9

Open-vocabulary (using 2D and 3D object mask predictors)
Open3DIS [7] (2D&3D) SAM+ISBNet CLIP 23.7 27.8 21.2 21.8
Open3DIS [7] (2D&3D) SAM+Mask3D CLIP 23.7 26.4 22.5 21.9

Open-vocabulary (using only 3D object mask predictors)
OpenScene [5] (2D F.) Mask3D OpenSeg 11.7 13.4 11.6 9.9
OpenMask3D [6] Mask3D CLIP 15.4 17.1 14.1 14.9
Open3DIS [7] (3D M.) ISBNet CLIP 18.6 24.7 16.9 13.3
Open3DIS [7] (3D M.) Mask3D CLIP 18.9 23.9 17.4 15.3
Ours (Search3D) Mask3D CLIP 14.3 16.1 13.6 12.9
Ours (Search3D) Mask3D SigLIP 23.0 26.3 21.2 21.4

TABLE V: 3D instance segmentation results on the ScanNet200
[38] validation set. Head, Common and Tail AP represent 3
subsets of the ScanNet200 classes based on class frequency [38],
in decreasing order of frequency. Our method, while capable of
segmenting fine-grained scene entities such as object parts, thanks to
its hierarchical representation also preserves strong open-vocabulary
3D object segmentation performance. Among open-vocabulary
methods which only use 3D object mask predictors for obtaining
3D object instances, our method has stronger results.

existing open-vocabulary 3D instance segmentation methods
using the standard benchmark on ScanNet200 [38] in Tab. V,
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Fig. 6: Heatmap visualizations for the similarity between the
text query and the segment features from our method Search3D.
Dark red means high similarity and dark blue means low similarity.

Methods AP AP50 AP25

GARField [18] 2.4 5.6 9.6
OpenScene [5] 9.0 12.6 16.7
OpenMask3D [6] 10.7 15.7 20.8
Search3D (Ours) 18.1 26.3 33.5

TABLE VI: 3D object instance segmentation scores on MultiScan
[12]. We compare with object-level features from our method.

Methods mIoU Acc

(1) MinkowskiNet [3] (fully supervised) 23.5 30.6

Open-vocabulary, 3D distillation of features
(2) OpenScene (3D distill) [5] 15.3 26.4
(3) OpenScene (2D/3D ensemble) [5] 20.1 35.6

Open-vocabulary, multi-view fusion
(4) OpenScene (2D fusion) [5] 18.6 31.9
(5) Search3D (Ours) 20.2 38.4

TABLE VII: 3D material segmentation scores on 3RScan
[14] using object-level material annotations from 3DSSG [42].
To assess the capabilities of our method on open-vocabulary
segmentation with a focus on concepts other than object or part
semantic categories, we present material segmentation results.

and additionally on MultiScan [12] in Tab. VI, using the
AP metrics as defined earlier in Sec. V-A. As shown in
Tab. V, our method has very strong 3D instance segmentation
performance, outperforming other counterparts that rely solely
on 3D masks for identifying object-level instances. These
results also validate the effectiveness of using SigLIP [26] as
a VLM for our method, resulting in strong gains compared
to using CLIP [11] to compute open-vocabulary features.
C. 3D material segmentation

Next, we perform an analysis on 3D material segmentation
task using the object-level material annotations from the
3RScan dataset [14]. We use Intersection-over-Union (mIoU)
and mean accuracy (Acc) to evaluate material class predictions
obtained using query-similarity based assignments similar
to the instance segmentation task. The results in Tab. VII
highlight our method’s ability to go beyond object semantics.

D. Runtime analysis

In Tab. VIII, we present a runtime analysis of our method.
The construction of the open-vocabulary hierarchical repre-
sentation 1⃝- 5⃝ is performed offline. Once this representation
is built, inference 6⃝, i.e., 3D search based on user input
queries can be performed at around 1-2 FPS.

E. Discussion and limitations

One of the main limitations of our work is that we rely on a
simple geometrical over-segmentation method to identify the

Method component Runtime Proportional

2⃝ 3D Object Instance Segmentation (per-scene avg.)
Forward-pass of 3D instance seg. model 0.55 s -
Post-processing & I/O 18.43 s T ∝ M

Total (per-scene) 18.98 s -

3⃝ Geometric Segmentation for Part Segmentation
Normal-based geometric segmentation 4.33 s -
Hierarchical tree formation & I/O cost 17.52 s T ∝ (M · S)

Total (per-scene) 21.85 s -

4⃝ Object-Feature Computation (per-scene avg.)
Top-k view selection 1.51 s T ∝ (nframes ·M)
Pre-computation of point projections 32.00 s T ∝ (nframes ·M)
Multi-level image crops 2.46 s T ∝ M
SigLIP features from image crops 215.62 s T ∝ M
Aggregation of object-features 3 milisec. -
I/O overhead 15.76 s -

Total (per-scene) (∼ 4-5 min) -

5⃝ Segment-Feature Computation (per-frame avg.)
Fine-grained 2D segments 1.99 s T ∝ nframes

Pixel-aligned feature computation 5.72 s T ∝ nframes

Multi-view fusion of segment-features 0.04 s T ∝ S

Total (per-scene) (∼ 10-15 min) (for 75-150 frames)

6⃝ Inference
New text query / vocab. embedding 0.61 s -
Search in 3D (similarity computation) 1.57 milisec. -

TABLE VIII: Runtime and computational complexity of system
components. Reported times are averaged over test scenes from
MultiScan. In the rightmost column, we also depict whether there
is a direct proportionality relationship between the total time per
scene, vs. other parameters such as the total number of predicted
object masks (M ), total number of predicted part-segments (S), and
the number of RGB frames in the image sequence nframes.

object parts. This is also evident from a comparison between
Tab. I and Tab. II: we observe that the AP scores in the oracle
mask experiment are much higher than the scores obtained
with predicted part masks, indicating room for improvement
in 3D part mask quality. One might reasonably suggest fusing
2D Semantic-SAM masks instead of obtaining 3D segments
directly. While a few methods such as SAM3D [43] proposed
to perform multi-view fusion of 2D masks from SAM [44]
to obtain segments in 3D, and presented promising results
for object-level 3D instance segmentation, our empirical
analysis has shown that such methods struggle with fusing
inconsistent and small part-level masks from multiple views.
We repeatedly observed that the multi-view fusion of high-
granularity Semantic-SAM [41] masks directly in 3D yields
noisy segments, and concluded that using a geometrical over-
segmentation method is more effective for part segmentation.
Nevertheless, there are a few limitations of the geometrical
segmentation method we employ for part segmentation, which
relies on surface normals. Particularly when several part
segments share the same surface normal, e.g., drawers of a
wardrobe, this approach struggles with separating these scene
entities from each other. The hierarchical scene segmentation
module also expects a relatively well-reconstructed scene
as input. Another limitation is that currently the feature
computation needs to take place offline. Finally, our approach
is limited to two explicit granularity levels (objects and
parts). One key reason for this design choice was the lack of
existing evaluation benchmarks tailored for even finer-grained



segments. We hope that future work will address this to go
beyond these explicit hierarchical levels.

VI. CONCLUSION

In this work, we presented a novel open-vocabulary
3D scene understanding approach, extending beyond tradi-
tional object-centric queries to enable fine-grained search
capabilities in 3D environments. Introducing a hierarchical
scene representation, our method can effectively identify and
segment not only object instances but also object parts and
generic attributes. We validate our approach through various
experiments and introduce new benchmarks for scene-scale
open-vocabulary 3D part instance segmentation, showing
improvements over existing methods. We hope this work will
pave the way for 3D open-vocabulary segmentation methods
that are less anchored at the object-level, and can flexibly
handle scene entities of varying levels of granularity.
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